NCJS «KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY named after K.I.SATBAYEV»

Institute _____ Energy and Mechanical engineering _____

Department <u>Mechanical engineering</u>

EDUCATIONAL PROGRAM

<u>6B07105-</u><u>Industrial engineering</u> the name of educational program

Code and name field of education: 6B07-Engineering, manufacturing and civil engineering Code and classification direction of personnel training: 6B071-Engineering and engineering trades Group of educational programs: B064-Mechanics and metal working EP purpose: 6 EP type: 6 Period of study: 4 years Volume of the credits: 240

Almaty 2023

NCJS «KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY named after K-LSATBAYEV»

Educational program <u>6B07105 - Industrial engineering</u> (the name of educational program)

was approved at the meeting of K.I. Satbayev KazNRTU Academic Council

Minutes 5 dated « 24 » November 2022.

was reviewed and recommended for approval at the meeting of K.I. Satbayev KazNRTU Educational and Methodological Council

Minutes 3 dated « 17 » November 2022.

Educational program <u>6B07105- Industrial engineering</u> (the name of educational program)

developed by Academic committee in the direction of "6B071-Engineering and engineering"

Full name	Academic degree/ academic title	Position	Workplace	Signature
Chairperson of Aca	demic Committee:			
Nugman E.Z.	Doctor PhD	Head of the Department of "Mechanical Engineering"	NAO KazNRTU named after K.I. Satpayev, Institute of Energy and Mechanical Engineering	14/
Teaching staff:				
Kerimzhanova M.F.	Candidate of Technical Sciences, Associate Professor	Professor	Department of Mechanical Engineering	Sti Hepe-
Uderbayeva A.E.	Doctor PhD	Assoc. Professor	Department of Mechanical Engineering	St Lebe- A. Yun-
Employers:		1		
Dyusembayev I.M.		Chief Engineer	Almaty plant "Electroshield"	Delell-
Students			1	THE SECOND
Akan A.		4th year student	Department of "Mechanical Engineering"	d diff

F KazNRTU 705-03 Educational program

Table of contents

	List of abbreviations and designati	4
1	Description of educational program	5
2	The purpose and objectives of educational program	7
3	Requirements for evaluating the learning outcomes of an	7
	educational program	
4	Catalog of disciplines	7
4.1	General information	7
4.2	The relationship between the achievability of the formed learning	10
	outcomes according to the educational program and academic	
	disciplines	
5	Curriculum of the educational program	22

List of abbreviations and designate

ECTS	European Credit Transfer and Accumulation System
BD	Basic disciplines
HEI	Higher education institution
SMSE	State mandatory standard of education
KazNRTU	K. I. Satpayev Kazakh National Research Technical University
MEP	Modular educational program
NJSC	Non-profit joint stock Company
GED	General education disciplines
EP	Educational program
PD	Profile disciplines
WC	Working curriculum
IWS	Independent work of a student
EMC	Educational and Methodological Council
AC	Academic council

1 Description of educational program

A specialist who develops a virtual prototype of products and technological processes (for example, for remote consulting of personnel, visual demonstration of the product to the customer at the design stage).

The professional activity of graduates of the program is directed to the field of mechanical engineering, additive manufacturing.

The direction of the specialty and specialization program covers engineering and engineering.

The field of professional activity of bachelors includes sections of science and technology containing a set of tools, techniques, methods and methods of human activity aimed at creating competitive engineering products and based on the use of modern methods and means of design, mathematical, physical and computer modeling of technological processes.

Bachelors can perform the following types of professional activities:

- organizational and managerial;

-production and technological;

- design and engineering;

- settlement and design;

- experimental research.

Functions of professional activity of graduates:

- development and design of technological processes for the manufacture of various types of products, equipment, tooling, tools;

- standard control of regulatory and technical documentation;

- solving design, technological, organizational-technical and organizational-economic tasks;

- - maintenance, organization of preventive inspections and routine repairs of production facilities, measurements, tests and control;

- development of design, technological and operational documentation, new technologies, methods of testing equipment and tooling for specific industries;

- analysis of the state of production and assessment of the stability of product quality in order to further develop and improve the efficiency of the enterprise;

- conducting experiments, measurements, observations, implementation of research results and scientific developments.

Graduates are prepared to solve the following types of tasks according to the type of professional activity:

- organizational and managerial: organization of the production process, organization of the work of performers;

- setting goals and forming management tasks related to the implementation of professional functions;

-organization of production maintenance management of the production process taking into account technical, financial and human factors;

-development of management algorithms;

-accounting planning and reporting, development of a business plan of the enterprise, planning to improve production efficiency;

-production and technological: development, implementation and operation of system, resource-saving technologies; development and implementation of technological processes for processing and assembling products;

-automation of machine-building production; creation of continuous in-line production processes, automated complexes, flexible automated productions;

-introduction of highly efficient technological equipment, ensuring environmental friendliness of machine-building production;

- design and engineering: execution of design and graphic works in the design of automation systems, design of highly efficient technological equipment; justification of criteria for evaluating the technical and economic efficiency of the designed systems;

-development of design, design and technological documentation using modern methods of computer-aided design;

- design and design: development of design schemes for the design of equipment systems, tooling and tools;

-execution of calculations for use in design documentation; justification of calculation methods;

- experimental research:

Application of modern experimental methods for the study of processes occurring in machine-building production; research of new directions in the technology of modern mechanical engineering; research of types of processing in mechanical engineering; research of automation objects in the field of mechanical engineering; scientific substantiation of methods for ensuring the quality of manufactured products and increasing labor productivity; Areas of professional activity

Areas of professional activity

Directions of professional activity of a graduate of this specialty:

- technological processes of machine-building production;

- design and construction of various types of equipment, tooling and tools;

- repair and maintenance of production equipment, tooling and tools;

- experimental research works. The content of professional activity.

The content of professional activity includes a set of means, methods and methods of production and technological, design, experimental research, organizational, economic and managerial activities, as well as design and design activities aimed at manufacturing competitive engineering products based on the use of modern design methods.

Requirements for the Bachelor's key competencies.

The bachelor must:

have an idea: about the main equipment, tools, equipment used in mechanical engineering; about calculation and design methods; about modern methods and methods of obtaining blanks; about the development of technological processes; about the current state, trends and prospects for the development of mechanical engineering; about the types of CAD support; about the composition of design tasks; about the sanitary and hygienic basics of labor protection; about the main hazards and harmful conditions; ways of preventing and eliminating accidents; about fixed assets and working capital; about economic efficiency; about modern

forms and methods of organization and management of production;

2 The purpose and objectives of additional educational program

EP purpose:

EP 6B07105- "Industrial Engineering" was developed in accordance with the National Qualification System, coordinated with the Dublin Descriptors and the European Qualification Framework. OP is focused on learning outcomes that form professional competencies in accordance with the requirements of the labor market.

The purpose of the educational program is the professional training of a graduate in the field of design, design and organization of machine-building production, the formation of a technically competent, socially responsible personality; possessing creative thinking, the ability to solve engineering problems, work in a team and having management competencies in the industrial sector.

EP tasks:

- formation of knowledge of modern information technologies;

- acquisition of theoretical and practical knowledge of computer-aided design of machine-building products;

- knowledge of methods and methods of mathematical and 3D modeling;

- acquisition of professional competencies in accordance with the requirements of industry professional standards;

- acquisition of knowledge of the basics of mechanical engineering technology, design of technological processes for the production of machines;

- formation of knowledge about the main trends in the development of mechanical engineering, the introduction of innovative digital technologies.

3 Requirements for evaluating the learning outcomes of an educational program

Description of mandatory standard requirements for graduating from a university and conferring an academic bachelor's degree: mastering at least 240 academic credits of theoretical training and final thesis

4 Passport of the educational program

N⁰	Название поля	Примечание
1		6B07- Engineering, manufacturing and
		civil engineering
2	Code and classification direction of personnel	6B071- Engineering and engineering
	training	trades
3	Group of educational programs	B064- Mechanics and metal working
4	Name of the educational program	6B07105-Industrial engineering
5	Short description of the educational program	The professional activity of graduates
		of the program is directed to the field of
		mechanical engineering, additive

4.1 General information

	manufacturing. In the educational program, students will receive professional knowledge of the basics of mechanical engineering technology, machining technology and machine
	assembly. They will acquire skills in designing machine structures and their parts, technological processes of machine production using modern software products (CAD/CAM/CAE).
6 EP purpose	Preparation of demanded, competitive and highly qualified bachelors in mechanical engineering; design, production and operation of machines aimed at their high quality and safety, high economic efficiency for the manufacturer and consumer
7 EP type	New
8 Level on NQF	6
9 Level on SQF	6
10EP distinctive features	0
	-
11List of competencies of the educational program:	 Ability to apply general engineering knowledge, methods of mathematical analysis and modeling in professional activities; Ability to analyze and evaluate both production and technological processes; Willingness to use modern information technological processes, mechanical engineering; Willingness to apply modern calculation methods in the design of parts and assemblies of mechanical engineering products; Willingness to use low-waste, innovative, additive technologies in mechanical engineering; Willingness to apply methods of quality control of products and objects in the field of professional activity;
	fundamental disciplines of mathematics, physics, chemistry, digital technologies in the design and preparation of machine- building production. ON2- Apply knowledge of economic laws, occupational safety and health, ecology, rules of moral development, culture of academic integrity at a professional level. ON3- Analyze, synthesize and design elements of machine structures using modern materials and methods for calculating structures for strength, rigidity and stability.

	ON4- To carry out technical preparation of
	production, to evaluate the quality of
	production processes and engineering
	products.
	ON5- Develop technical and technological documentation for the design and
	production of metalworking equipment,
	tooling and cutting tools.
	ON6-Apply the principles of
	interchangeability and rationing of
	standard connections in machines.
	ON7- Apply modern engineering
	materials, technologies and methods of
	design and production of blanks in
	mechanical engineering.
	ON8- Choose effective ways to implement
	the main technological processes and
	apply methods of processing machine parts
	based on additive technologies, automated
	design systems and production
	management. ON9- Use process modeling methods,
	software products and the latest
	technologies to solve engineering
	problems in the field of metalworking.
	ON10- Analyze and apply modern
	methods of economic regulation and
	production management, planning and
	organization of production.
	ON11- To use the laws of fluid and gas
	mechanics in the design and operation of
	technological equipment in the
	manufacture of machine-building
	products.
	ON12- The use of modern technical means
	and information technologies of machine-
	building production, advanced equipment, tooling and additive technologies.
13Form of training	daytime
14Period of study	4 years
15 Volume of the credits	240
16Language of education	Kazakh, russian
17The awarded academic degree	Bachelor of Engineering and
	technology
18Developer(s) and authors:	The educational program was
	developed by the academic committee
	in the direction "6B071-Engineering
	and Engineering"

4.2 The relationship between the achievability of the formed learning outcomes according to the educational program and academic disciplines

N⁰	2 Name of discipline	Short description of discipline	Numbe										odes)	
			of credits	ON	10N2	ON3	ON4	ON5	ON6O	N7ON	180N9	ON10	ON11	ON12
		Cycle of general education		iplir	ies									
		Required componen											r	
1	Foreign language	English is a compulsary subject. According to the results of placement test or IELTS score, students are placed into groups and disciplines. The name of the discipline corresponds to the level of English. When		v										
		passing from level to level, prerequisites and postrequisites are respected.												
2		In this course author considers socio-political, socio-cultural spheres of communication and functional styles of the modern kazakh (russian) language. The course covers the specifics of the scientific		v										
	Kazakh (Russian) language	style to develop and activate professional communication skills and abilities of students. Also it allows students to leavn the basics of scientific style practically and develop the ability of production structural and semantic text analysis.	f											
3	History of Kazakhstan	The purpose of the discipline is to provide objective historical knowledge about the main stages of the history of Kazakhstan from ancient times to the present day; introduce students to the problems of the formation and development of statehood and historical and cultural processes; contribute to the formation of humanistic values	n F I	V										
		and patriotic feelings in the student; teach the student to use the acquired historical knowledge in educational, professional and everyday life; evaluate the role of Kazakhstan in world history.	1											
4	Philosophy	The purpose of the discipline is to teach students the theoretical foundations of philosophy as a way of knowing and spiritually mastering the world; developing their interest in fundamental knowledge, stimulating the need for philosophical assessments of	/ I F	v										
		historical events and facts of reality, assimilating the idea of the unity of the world historical and cultural process while recognizing the diversity of their skills in applying philosophical and general scientific methods in professional activities.												
5	Module of socio-political knowledge (sociology, political science)	The objectives of the disciplines are to provide students with explanations on the sociological analysis of society, about social communities and personality, factors and patterns of social development, forms of interaction, types and directions of social		v										
		processes, forms of regulation of social behavior, as well as primary political knowledge that will serve as a theoretical basis for understanding social -political processes, for the formation of political culture, development of a personal position and a clearer	r I											

		understanding of the extent of one's responsibility; help to master the								
		political, legal, moral, ethical and socio-cultural norms necessary to								
		act in the interests of society, form personal responsibility and achieve								
		personal success.								
6	Module of socio-political	The purpose of the disciplines is to study the real processes of cultural	5	v						
	knowledge (cultural studies,	creative activity of people who create material and spiritual values,								
	psychology)	identify the main trends and patterns of cultural development, changes								
		in cultural eras, methods and styles, their role in the formation of man								
		and the development of society, as well as master psychological								
		knowledge for the effective organization of interpersonal interaction,								
		social adaptation in the field of their professional activities.								
		Cycle of general education d	-	es						
		University componen		T		 	 			
7	Information and communication	The aim of the course is to gain theoretical knowledge in information	5	v						
	technologies (in English)	processing, the latest information technologies, local and global								
		networks, the methods of information protection; Getting the right use								
		of text editor editors and tabulators; creation of base and different								
		categories of applications.								
		Cycle of general education di	-	es						
		Optional component					 			
8	Fundamentals of anti-corruption	The course introduces students to the improvement of socio-	5		v					
	culture and law	economic relations of Kazakhstan society, psychological features of								
		corrupt behavior. Special attention is paid to the formation of an								
		anti-corruption culture, legal responsibility for acts of corruption in								
		various spheres. The purpose of studying the discipline								
		«Fundamentals of anti-corruption culture and law» is to increase								
		public and individual legal awareness and legal culture of students,								
		as well as the formation of a knowledge system and a civic position								
		on combating corruption as an antisocial phenomenon. Expected								
		results: to realize the values of moral consciousness and follow								
		moral norms in everyday practice; to work on improving the level of								
		moral and legal culture; to use spiritual and moral mechanisms to								
		prevent corruption.							 	
9		Discipline studies the foundations of economics and entrepreneurial	5		v					
	entrepreneurship	activity from the point of view of science and law; features,								
		problematic aspects and development prospects; the theory and								
		practice of entrepreneurship as a system of economic and								
		organizational relations of business structures; The readiness of								
		entrepreneurs for innovative susceptibility. The discipline reveals the								
		content of entrepreneurial activity, the stages of career, qualities,								
		competencies and responsibility of the entrepreneur, theoretical and								
		practical business planning and economic examination of business								
		ideas, as well as the analysis of the risks of innovative development,								
1.0		the introduction of new technologies and technological solutions.	5					 	 	
10	Ecology and life safety	The discipline studies the tasks of ecology as a science,	5		v					
		environmental terms, the laws of the functioning of natural systems			1					

				1 1	 			 	
	and aspects of environmental safety in the conditions of labor								
	activity. Monitoring of the environment and management in the field								
	of its safety. Sources of pollution of atmospheric air, surface,								
	groundwater, soil and ways to solve environmental problems; life								
	safety in the technosphere; natural and man-made emergencies								
11 Fundamentals of scientific	The purpose of the discipline is to form the skills of organizing and	5	v						v
research methods	planning scientific research, methods of conducting experimental								
	research, methods of information processing. The discipline								
	introduces students to the goals, objectives and stages of scientific								
	research. The terms and concepts, the methodology of the								
	experiment, mathematical methods of processing research results are								
	considered. The concept of engineering, laboratory and industrial								
	experiment, bench research. The discipline introduces the basics of								
	the theory of solving inventive problems, algorithmic methods of								
	finding technical solutions and their optimization. Highlights the								
	main mathematical methods of optimization, the use of artificial								
	intelligence capabilities to solve optimization problems; issues of								
	search, accumulation and processing of scientific information.								
	Cycle of basic disciplin	es		1 1					
	University componen								
12 Canaral Chamistry	The purpose of the discipline is to study the basic concepts and laws	4			 <u> </u>	- 1	тт		-
12 General Chemistry	of chemistry; fundamental laws of chemical thermodynamics and	4	v						
	kinetics; quantum mechanical theory of atomic structure and chemical								
	bond. Solutions and their types, redox processes, coordination								
	compounds: formation, stability and properties. The structure of								
	matter and the chemistry of the elements.	_	-						_
13 Physics I	Objectives: to study the basic physical phenomena and laws of	5	v						
	classical, modern physics; methods of physical research; the								
	relationship of physics with other sciences. The following topics are								
	considered: mechanics, dynamics of rotational motion of a solid body,								
	mechanical harmonic waves, fundamentals of molecular kinetic								
	theory and thermodynamics, transport phenomena, continuum								
	mechanics, electrostatics, direct current, magnetic field, Maxwell								
	equations.								
14 Mathematics I	The course is based on the study of mathematical analysis in a volume	5	v						
	that allows you to study elementary functions and solve the simplest								
	geometric, physical and other applied problems. The main focus is on								
	differential and integral calculus. The course sections include the								
	differential calculus of functions of one variable, the derivative and								
	differentials, the study of the behavior of functions, complex numbers,								
	and polynomials. Indefinite integrals, their properties and methods of								
	calculation. Certain integrals and their applications. Improper								
	integrals.								
15 Physics II	The course studies the laws of physics and their practical application	5	v		1 1		1		
	in professional activity. Solving theoretical and experimental-	5	ľ				ľ		
	practical educational problems of physics for the formation of the								
<u>i I</u>	practical educational problems of physics for the formation of the			1			1		

				-							-	
		foundations in solving professional problems. Assessment of the									I T	
		degree of accuracy of the results of experimental or theoretical										
		research methods, modeling of physical condition using a computer,										
		study of modern measuring equipment, development of skills for										
		conducting test studies and processing their results, distribution of the										
		physical content of applied tasks of the future specialty.										
16	Mathematics II	The discipline is a continuation of Mathematics 1. The course sections	5	v						v		
10	Wathematics II	include elements of linear algebra and analytical geometry. The main	5	v						v		
		issues of linear algebra are considered: linear and self-adjoint										
		operators, quadratic forms, linear programming. Differential calculus										
		of a function of several variables and its applications. Multiple										
		integrals. The theory of determinants and matrices, linear systems of										
		equations, as well as elements of vector algebra. The elements of										
		analytical geometry on the plane and in space are included.		_						_		
17	T, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	General provisions of the methodology of engineering design. Stages	5	v								
	Introduction to engineering	of creating cars. Design procedures. Principles of engineering design.										
	design	Engineering design methods. Manufacturability of machine designs.										
18	The theoretical mechanics	Statics: reactions of communications; the theory of the moments;	5		v		v					
		conditions of balance of flat and spatial systems of forces; the centre										
		of grav-ity of a body. Kinematics: kinematics of a point; the										
		elementary movements of a firm body; plane-parallel movement of a										
		firm body; free movement of a firm body; complex movement of a										
		point and a firm body. Dynamics: dynamics of a material point in										
		inertial and not inertial systems of readout; mechanical system and its										
		characteristics; the general theorems of dynam-ics of a material point										
		and system; analytical dynamics; the theory of impact.										
10	Strength of materials	Stretching and compression. Stresses in cross sections and	5		v			v				
17	Strength of materials	deformations of a straight rod. Mechanical properties of materials	5		v			v				
		under tension and compression. Calculation of strength and stiffness										
		in tension-compression. Geometric characteristics of flat sections.										
		Shear and torsion. Calculation of strength and torsional stiffness.										
		Bend. Normal and tangential bending stresses. Calculation of bending										
		strength. Theory of stressed and deformed states. The limit state										
		hypothesis. Complex resistance. Stability of the equilibrium of										
-		deformable systems. Dynamic load.			$\left \right $		+ +		-+			
		The purpose of the discipline is to acquire theoretical and practical	5							v		v
	Engineering	knowledge on the basics of electrical engineering and electronics. The										
		basic laws of the processes occurring in electromagnetic and										
		electronic circuits and methods for determining the electrical							1			
		quantities characterizing these processes are studied. Methods of										
		calculation of DC electric circuits are studied; analysis and calculation										
		of linear AC circuits; analysis and calculation of magnetic circuits.										
		Electromagnetic devices and electrical machines. Fundamentals of							1			
		electronics and electrical measurements. The element base of modern							1			
		electronic devices. Fundamentals of digital and microelectronics,							1			
		microprocessor tools.				1						
-									-			

				-			 	 			r	
machine parts	The purpose of the study of the discipline is to gain knowledge of the general methods of studying and designing the schemes of mechanisms necessary for the creation of machines, devices, automatic devices and complexes that meet modern requirements for efficiency, accuracy, reliability and economy. The main task of the discipline is to give knowledge about the kinematic and dynamic characteristics of mechanisms with rigid and elastic links and controlled kinematic chains, about methods for determining the parameters of mechanisms according to the required conditions, methods of vibration protection of a person and a machine, about controlling the movement of mechanisms and machines.	5			V		V					
enterprise	The purpose of the discipline is to acquire theoretical knowledge and practical skills of economic assessment of the company's activities. The discipline studies the structure of a machine-building enterprise, fixed and current assets, production capacity of the enterprise, material and technical support of production, personnel, financial resources of production. The issues of forecasting and planning of production, calculation of production costs, production costs, economic efficiency, analysis and evaluation of the economic activity of the enterprise are studied.	5		V						r		
	The purpose of studying the discipline is to form students' scientific ideas about the nature and properties of probabilistic processes, random variables, distribution functions and statistical methods, mastering practical skills of working with random variables and methods of their search and evaluation. The subject of probability theory, probability definitions, elements of combinatorics, random variables and the laws of their distribution are considered. The basics of mathematical statistics are studied - samples, types of samples, point and interval estimates.	5	v			v						
	The purpose of the discipline is to acquire knowledge and practical skills on the basics of interchangeability, technical measurements, and machine manufacturing accuracy. Students acquire knowledge on accuracy of manufacturing of machines. The basic con-cepts of interchangeability. Concepts about the sizes, maximum deviations, admissions and landings. Principles of construction of system of admissions and landings. Calcu-lation and a choice of landings. Normaliza-tion, methods and means of measurements and the control of rejections of the form, an arrangement, a roughness and a sinuosity of a surface of a detail. Methods and means of measurements and the control of smooth cylindrical connections; carving connec-tions; conic connections and tooth gearings. Substantive provisions of the theory and practice of calculation of dimensional cir-cuits.	6					v					
25 Probabilistic models in industrial engineering	The purpose of the discipline is to acquire theoretical and practical knowledge of the reliability of technical systems (machines). The fundamentals of probability theory and the application of the laws of probability theory to the analysis of technological and technical systems, including in mechanical engineering, in procurement	5	v					N	ſ			

	-		1	 							
		production, are studied. With the help of probabilistic and statistical									
		models, the problems of designing, manufacturing and controlling									
		products are solved. The use of such models in the calculations and									
		research of the accuracy of equipment and technological processes, in									
		the development and selection of statistical methods for quality									
		control of machine-building products.									
26	Construction materials and heat	The purpose of the discipline is to provide theoretical and practical	5		v		v				
	treatments	knowledge of the basic properties of structural materials used in	U U								
	treatments	mechanical engineering, methods of their heat treatment. The									
		discipline considers: classification of engineering materials,									
		properties and characteristics of materials, methods of studying the									
		structure and composition of materials, the diagram of iron-cementite.									
		The production of cast iron and steel, non-ferrous metal alloys is being									
		studied. The types of heat treatment, modes and recommendations for									
		their use are considered; promising engineering materials.									
70	Metalworking machines	At the study of this discipline students will get general information on	5			v	 +	+			V
21		the basic types of industrial equipment for making of de-tails, and also	5			v		1			v
		taking about bases of plan-ning and exploitation of these types of eq-									
		upment. Students will know the device of machines, machine-tools									
		and automats. Will master approach of the systems at an analy-sis and									
		synthesis of objects of metal-cutting equipment and will get abilities									
		of kinemat-ics analysis, формообразования etc. Metal-cutting									
		machine-tools. Machine-tools for treatment of bodies of rotation.									
		Machine-tools for treatment of openings. Machine-tools for treatment									
		of prismatic details. Machine-tools for abrasive treat-ment. Metal-									
-		cutting machine-tools with CHPU. The purpose of the discipline is the formation of knowledge on the	4				 _	_		 	
28	Cutting theory		4					v			v
		basics of the theory of metal cutting, practical skills in calculating									
		cutting modes, choosing a model of equipment. Basic concepts and									
		definitions of cutting theory. The physical basis of the theory of									
		cutting. Performance and failure of blade cutting tools. The peculiarity									
		of various methods of machining. Lubricating technology media.									
		Machinability of various materials. The method of increasing the									
		reliability of the right choice of tool material. Heat phenomena during									
		cutting. The theory of abrasive processing. Calculation of cutting									
		modes. Physico-chemical processing methods. Features of the cutting									
		process and cutting conditions in automated production.	6				 	1			
29		The purpose of the discipline is to acquire students 'knowledge about							v		v
	mechanical engineering	the automation of existing and projected processes, measures for the						1			
		effective use and testing programs of automation, on the development									
		of automation, acquisition of skills and abilities of effective use of						1			
		automated metal - cutting equipment and other automation tools,									
		improvement and design of new technological processes of						1			
		manufacturing parts.						1	<u> </u>		
		Cycle of basic discipli									
		Optional componer	nt	 			 			 	
-											

30Hydraulics and hydraulic pneumatic drive	The purpose of the discipline is the formation of knowledge in the field of hydraulics, hydraulic and pneumatic machines for processing, feeding and moving liquids and gases. The discipline deals with the issues of hydrostatics: basic physical properties of liquids and gases; hydrodynamics: motion of liquids and gases, Euler and Bernoulli equations, modeling of hydrodynamic phenomena; hydraulic machines and hydraulic drives. Fundamentals of pneumatic actuators, pneumatic motors, equipment of pneumatic systems. The basics of operation of combined hydraulic pneumatic actuators are studied.	5						v	
31 Mechanics of liquid and gas	The course "Mechanics of liquid and gas" examines the models and physical properties of liquids and gases; the forces acting in the fluid, hydrostatic pressure and its properties; basic equations and laws of equilibrium and motion of liquids and gases; flow regimes and methods for calculating applied problems	5						v	
32Calculation and design of cutting tools	This discipline must teach students correct-ly to construct and rationally exploit mod-ern metal-cutting instruments. To teach stu-dents correctly to design, and also gro-unded to choose from a set of standard, necessary metal-cutting instruments, com-ing from the set requirements to quality of details and terms of their treatment. Inst-rumental materials. Instruments for treat-ment of openings. Abrasive instruments. Instruments for formation of screw-thread. Instruments for treatment of not эволь-вентных types.	5		N		V			
33Production of cutting tools	This discipline must teach students correct-ly to construct and rationally exploit mod-ern metal-cutting instruments. To teach stu-dents correctly to design, and also gro-unded to choose from a set of standard, necessary metal-cutting instruments, com-ing from the set requirements to quality of details and terms of their treatment. Inst-rumental materials. Instruments for treat-ment of openings. Abrasive instruments. Instruments for formation of screw-thread. Instruments for treatment of not эволь-вентных types.	5		٦		v			
34Drives of CNC machines	The purpose of the discipline is to acquire theoretical and practical knowledge on the drives of CNC machines, the principles of operation, their regulation and operation. Block diagrams of drives of metal-cutting machines, modular drives of the main movement, methods of regulating drives of machine tools. Main motion drives and feed drives, their	5		N					v

				1 1		1 1	1 1		
	design, electromechanical and electric drives of CNC								
	machines.	5							
35Operation of machines with	The purpose of the discipline is to gain knowledge about the				v		v		
program control	design of CNC machines, the adjustment of machines for								
	processing workpieces, the operation of machines. The								
	discipline studies the classification, basic requirements for								
	CNC equipment; the main parts of CNC machines;								
	adaptations, cutting and measuring tools for CNC machines;								
	tool binding; adjustment of the machine for processing parts;								
	workplace of the operator of the CNC machine; the design of								
	individual components of the CNC machine.	-							
36Dynamics of mechanical	Basics of feasibility study when choosing a method for	5				v	v		
machining	producing blanks. Basic concepts about blanks and their								
	characteristics. Methods for producing castings. Production of								
	forged, stamped blanks. Features the formation of cast parts.								
	Design and production of cast billets. Features of the formation								
	of cast parts. Quality control of castings. Ways to fix casting								
	defects. Design and manufacture of blanks by pressure								
	treatment. General characteristics of metal forming processes.								
27 Designing of blank and desting	Getting blanks in special ways.	5							
37Designing of blank production	The purpose of studying the discipline is to acquire students'				v	v			
	knowledge and skills in choosing a method for obtaining blanks that provides low-waste and non-waste technology,								
	methods of designing and manufacturing blanks. Methods of								
	obtaining blanks, design and development of technological								
	processes for their production, schemes of work of								
	procurement equipment. Design and production of workpieces								
	by methods of processing materials by pressure, welding								
	methods. Various casting methods. The current state of								
	procurement production, new promising ways of obtaining								
	blanks.								
	Cycle of profile discipli	nes	1 1	1	I	1 1	1	I	
	University componen								
38 Processes of machine-building	The purpose of the discipline is to acquire knowledge of technological				v	v			v
production	methods for obtaining and processing blanks and machine parts. The	č			ľ				
к	discipline studies the general characteristics of metals and alloys used								
	in mechanical engineering, the technological foundations of								
	metallurgical production, the technology of metal processing by								
	pressure, the technology of foundry production, the technology of								
	welding production. The technology of production of blanks and machine parts from non-metallic materials is considered; features of								
	welding of various metals and alloys.								
					1				1

				1				-	1	1 1	 	
39	Labour safety	The purpose of the discipline is to form knowledge of legislative acts	5		v							
		and norms aimed at ensuring occupational safety. In the discipline,										
		students study legal and regulatory documents on labor protection										
		(LP), occupational hygiene and industrial sanitation. Dangerous and										
		harmful production factors, safety measures during installation and										
		operation of technological equipment, emergency situations and										
		elimination of their consequences are considered. In the discipline,										
		they study the basics of LP management, rationing, methods of										
		assessing and forecasting LP, methods of monitoring and auditing LP.										
40	Fechnology of mechanical	The purpose of the discipline is to form knowledge and skills in the	5			v	r		v			
	engineering	design of technological processes for assembling machines and	•									
	Singineering	manufacturing machine parts. The discipline deals with the basics of										
		mechanical engineering technology: terminology, theory of										
		manufacturing accuracy, basing theory, calculation of allowances,										
		processing modes, equipment selection. The basics of designing										
		typical technological processes for manufacturing parts of classes are										
		studied: shafts and axles, body parts, discs (gears), bushings, levers										
		and brackets, fasteners.										
41	Computer-aided design systems	The purpose of the course is to familiarize students with various	4							v		V
	of machine structures	automatic design systems and acquire the necessary knowledge and	-							v		•
	of machine structures	skills to develop various technical documentation and perform										
		calculations using a personal computer. The task of the discipline: to										
		give the necessary knowledge on various kinds of automatic design										
		systems of technical and design documentation, to teach how to use										
		the knowledge gained.										
		Cycle of profile discipli	nes									
		Optional component										
42	Design of machining on CNC	The purpose of the discipline is theoretical and practical knowledge	5				v			v		
	nachines	on the design of technological processes for processing workpieces on	U U				·			·		
	naennes	CNC machines. The discipline studies the issues of classification, the										
		structure of CNC machines, the development of control programs.										
		Design of processing technology on turning, grinding, milling,										
		combined CNC machines. Features of designing technological										
		processes in the conditions of flexible automated production,										
		programming automation systems.										
43	Development of control	The purpose of the discipline is theoretical and practical knowledge	5	-			v		+	v		
	*	on the development of control programs for processing on CNC	5				v			v		
	programs	machines. The issues of preparation for the development of control										
		programs, technological documentation, calculation of elements of										
		the trajectory of the cutting tool, recording, control and editing of the										
		control program are considered. The basic principles of automation of										
		the process of preparation of control programs. The study of the										
		automated workplace of a programmer technologist, a CNC machine										
		operator. Various software products of SolidWorks, Autodesk are										
		considered.										
				1	1					1		

	The core of the discipline is the formation of knowledge and practical skills of 3D modeling and manufacturing of parts on 3D printers. The discipline studies modern information technologies, gives knowledge of spatial, three-dimensional thinking and practical skills of working with 3D printing. Modeling with the help of modern software products SolidWorks, APM, etc. Additive manufacturing technologies of machines and their parts are being studied. The essence of additive technologies, methods of 3D printing of parts from various materials. 3D printing technologies.	4			v		V
engineering	The purpose of the discipline is to acquire knowledge and skills in the field of creating and applying mathematical models of technological processes. The structure, classification, mathematical description of the regularities of technological processes, probabilistic and statistical models of technological processes, models of selection and adoption of technological decisions, modeling of the processes of machining workpieces and machine assembly are considered. Modeling of power calculations of structures – elements of automated engineering analysis (SAE), the finite element method in engineering.	4			v		
processes in mechanical engineering	The purpose of the discipline is the formation of competencies necessary for the performance of production, technological and design activities related to the automation of machine-building production. The issues of automation of production at all stages of the product life cycle are considered. Methods and means of automating the design and production of machines: CAD, CNC machines, aggregate machines, industrial robots, creation and analysis of flexible production sites. The basic principles of creating flexible production modules based on CNC machines.	6			v		v
	The purpose of the discipline is to prepare a future specialist for design and technological activities in the conditions of production automation based on industrial robots. The basics of automation and robotization of mechanical engineering, the structure and technological capabilities of robots are studied. Classification of robots, principles of operation of gripping devices, features of robots used in machine assembly operations. The main technical parameters of robots, cyclograms of work in flexible production models.	6		v	v		
	The purpose of the discipline is the formation of practical skills in the design of production sites and workshops. The main stages of designing mechanical assembly shops with calculation of the main technological and production parameters, classification of mechanical shops and their composition, lifting and transport equipment of the shop and warehousing are considered. The structure of workshops, the layout of the main and auxiliary production sites. Calculations of the quantity and productivity of equipment, the capacity of production and technological equipment.	6			v	v	
49 Production design	The purpose of the discipline is to prepare the student to solve problems related to the design of workshops, the ability to find and choose progressive design and technological solutions. The	6		v		v	

50		composition of the machine-building plant. Determination of the quantity and loading of equipment. Selection of the type and calculation of heating devices. Calculation of the number of workers. Determination of the areas of departments within the workshop. The layout of the main and auxiliary sections, the transport system of the workshop. Design methods. Classification and structure of the main workshops. Construction design. Automation of design of workshops of machine-building plants							
	technological equipment	designing of the industrial equipment applied at processing of details of cars. Role and value of industrial equip-ment in mechanical engineering develop-ment. Classification of adaptations: on a special- purpose designation, a technological sign, specialisation and mechanisation de-gree. Basic elements of designs. Special ad- aptations. Designing and calculation of ad-aptations. Calculation and a choice of drives for adaptations.	5		v	v			
51	Progressive methods of surface treatment	The purpose of the discipline is to acquire knowledge of modern methods of surface treatment of workpieces in machine-building production. The discipline considers technologies of procurement production - laser and waterjet cutting of metal; new structural materials - processing of metal-carbon fiber packages. Electrophysical and electrochemical methods of surface treatment of workpieces. Innovative technologies are considered - additive manufacturing, manufacturing of parts on 3D printers. Finishing and strengthening methods of processing parts.	5			V		,	v
	CAM(Solidworks, Inventor)	The purpose of teaching the discipline is to form the skills of the profession as a constructor using the Solid Works program. The purpose of the discipline is to form students ' basic concepts of modeling(structure, classification,application of models, requirements for models), to introduce students to the theoretical foundations and ways of optimization of modeling processes in Mechanical Engineering, processing and obtaining information from various sources, to analyze the structure of the model, to know its application ,to know the methods of constructing models, to use modern applied programs in the design of machine mechanisms and nodes.Machines, drives, and systems being studied, development of physical and mathematical models of phenomena and objects	5			v	v		
53	Additive Manufacturing	The concept of additive manufacturing. The history of the emergence and development of additive technologies. 3D modeling as the basis of additive technologies. Type of print FDM. Type of print SLA. Type of printing DLP. Print Type SLS / SLM. Type of printing 3DP. Type of printing LOM. Types of printing MJM, EBM. Optimization of additive manufacturing. Preparation of 3D models for printing. Engineering calculations in additive manufacturing. Accounting for the characteristics of materials in additive manufacturing. The concept of slicers. Variations and correlation of print parameters. Defects and their classification. Post processing. Mechanical processing of	5					,	v

	1	products. Heat treatment. Chemical treatment. Optimization of the				П				
		prior taking into account post-processing.								
54	Theory and practice of project management	The purpose of mastering the discipline is to expand and deepen knowledge about modern project management technology and study the principles of using project management in practical tasks.	5		V		v		v	
55	Capstone Project	The purpose of the discipline is the formation of a complex of theoretical knowledge and practical skills in management, maintenance and support of technical preparation of production. Practical possibilities are considered and professional skills of students to work in a team are formed. Students solve real engineering and technical problems of production, formation and implementation of the life cycle of machine-building products based on the collection of information, critical assessment of the feasibility of the project, in- depth analysis and execution of the project report.	5					V	v	

5. Curriculum of the educational program

KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY named aft

SAFFAH

CURRICULUM

of Educational Program on enrollment for 2023-2024 acade

Educational program 6B07105- "Industrial engineering" Group of Educational programs B064 - "Mechanics and metalworking"

	Form of study: full-time Name of disciplines	Duration o Cycle	Total	Total	classroo	SIS	Form of	cademic	degree: E	sachelor o	of Engine	ering and	Technolo	ogy	
Dissiplin		Syen	amount	hours	m	(includin	control		llocation o		ace trainin ourse				
Discipline code			in		volume	g TSIS)	control	1	2	3	ourse 4	5semeste	ourse 6	1V c	ourse 8
			credits		of lek/lab/p	in hours		1	semester			r	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	semester	
CYCLE	OF GENERAL EDUCATION	DISCIPL	INES (GI												
N/2 100	Post A. L					le of lang									
LNG 108 LNG 104	English language Kazakh (Russian) language	GED, RC	10	300	0/0/6	210	E	5	5						
LING TON	Kazakii (Russian) language	GED, RC	10	300	0/0/6	210	E	5	5						
KFK 101-	Physical Culture					le of phy			-				-	-	-
104	r nysical contac	GED, RC	8	240	0/0/8	120	Difcredit	2	2	2	2				
	Information and communication			M-3. N	Module of	f inform	ation tee	hnology							1
CSE 677	technologies (in English)	GED, RC	5	150	2/1/0	105	E				5				
_	1			M-4. M	odule of	socio-cul	tural dev	elopmen	it						
HUM 137 HUM 132	History of Kazakhstan	GED, RC	5	150	1/0/2	105	SE		5		1				
HUM 120	Philosophy Socio-political knowledge module (sociology, politology)	GED, RC	5	150 90	1/0/2	105 60	E				5		-		
HUM 134	Socio-political knowledge module	GED, RC	5	150	2/0/1	150	E			5			-		
	(culturology, psychology)	M			0.2003		1000			1					
HUM 136	Fundamentals of Anti-corruption Culture and Law	M-	5. Modul	e oi anti	-corrupt	ion cultu	re, ecolo	gy and li	te safety	base					
MNG 489	Fundamentals of Economics and Entrepreneurship	GED, CCH	5	150	2/0/1	150	Е			5					
MSM500	Fundamentals of scientific research methods				al of t										
CHE 656	Ecology and life safety														
CYCLE	OF BASIC DISCIPLINES (B	D)													
			M-6	. Modul	e of phys	ical and	mathema	atical tra	ining						
MAT 101	Mathematics I	BD, UC	5	150	1/0/2	105	E	5							
PHYIII	Physics I	BD, UC	5	150	1/1/1	105	Е	5				1			-
MAT 102	Mathematics II	BD, UC	5	150	1/0/2	105	E		5					-	
PHY112	Физика II	БД, ВК	5	150	1/1/1	105	ten la la la la		5	1	-				
MSM132	Introduction to engineering design	BD, UC	5	150	1/2/0	echnical 105		module 5	-					-	
CHE815	General chemistry	BD, UC	4	120	1/2/0	75	E	4		_					
MSM102	Basics of interchangeability	BD, UC	5	120	1/1/1	105	E	4		5					
GEN408	Resistance of materials	BD, UC	5	150	1/1/1	120	E				5			-	-
MSM106	Probabilistic models in industrial	BD, UC	5	150	1/1/1	105	E					5			
GEN412	engineering Theoretical mechanics											-			
MSM133	Structural materials and heat treatment	BD, UC BD, UC	5	150	2/0/1	105	E			5					
MSM410	Theory of mechanisms and machine parts	BD, UC	5	150	1/1/1	105	E					5			
ELC101	Electrical engineering and electronics	BD, UC	5	150	1/1/1	105	E			5					
4CH531	Qualimetry in mechanical engineering	BD, UC	5	150	2/0/1	105	Е					5			
4SM401	Metalworking machines	BD, UC	5	150	1/0/2	105	E					5			
dSM419	Economies of a machine-building enterprise	BD, UC	5	150	1/0/2	105	Е							5	
4SM435	Cutting theory	BD, UC	4	120	1/1/1	75	E				4				
4SM427	Automated design in mechanical engineering	BD, UC	6	180	1/2/1	120	Е							6	
MSM149	Hydraulics and hydropneumatic drive	BD, CCH	5	150	1/0/2	105	E					5			
3201	Elective	BD, CCH	5	150	1/0/2	105	Е						5		
3202	Elective	BD, CCH	5	150	1/0/2	105	E					2	5		

								6	0	60		60		60	the second second
	Total based on UNIVERSITY:							31	29	32	28	30	30	33	27
AAP500	Military affairs	ATT	0				Peo						-		
				M-11. M	odule of	addition	al types	of trainin	a						- 0
ECA108	Final examination	FE	8								-				8
				M-	10. Modi	le of fin	al attest	ation							,
4307	Elective R&D	PD, CCH	5	150	2/0/1	105	E	louure				- 1			5
				M-9	. Manag	ement to	aining m	odula	<u>.</u>	1	1	1	6	1	
AAP198	Industrial practice II	PD, UC	6								-		6		
AAP197	Industrial practice I	PD, UC	4							-	4				5
4306	Elective	PD, CCH	5	150	2/1/0	105	E				-	,			
3305	Elective	PD, CCH	5	150	1/0/2	105	E					5		6	
4304	Elective	PD, CCH	6	180	2/0/2	120	E	-	-					6	_
4303	Elective	PD, CCH	6	180	2/1/1	120	E	-	-				4		
3302	Elective	PD, CCH	4	120	1/2/0	75	E	-							- 5
4301	Elective	PD, CCH	5	150	1/2/0	105	E	-							
dSM411	Automated design systems for machine structures	PD, UC	4	120	1/2/0	75	E								4
4SM129	Technological processes of machine-building production	PD, UC	5	150	2/1/0	105	E						5		
MSM176	Technology of mechanical engineering	PD, UC	5	150	1/0/2	105	E							5	_
HYD482	Labor protection and industrial safety (by industry)	BD, UC	5	150	2/0/1	105	Е							5	
	1		M-8. 1	Module o	f product	tion and	technolo	ogical pre	paration						
TULE	OF PROFILE DISCIPLINE	.S (PD)													
		BD, UC	2						2			1			
AAP196	Training Practice			150	2/1/0	105	E						5		
3203	Elective	BD, CCH	5	150	0.00.00	1.0.0		1							

	Number of credits for the entire	period of s	tudy		
	Cycles of disciplines		Cre	lits	
Cycle code		required component (RC)	university component (UC)	component of choice (CCH)	Total
GED	Cycle of general education disciplines	51		5	56
BD	Cycle of basic disciplines		101	15	116
PD	Cycle of profile disciplines		24	36	60
	Total for theoretical training:	51	125	56	232
FA	Final attestation	8			8
_	TOTAL:	59	125	56	240

Decision of the Academic Council of Kazntu named after K.Satpayev. Protocol No 5 or "24" 11 20 214y. Decision of the Educational and Methodological Council of Kazntu named after K.Satpayev. Protocol No 3 or "17" 11 20 204. Decision of the Academic Council of the Institute E&ME. Protocol Nador "11" 10 20 244y.

Ka Vice-Rector for Academic Affairs ł B. A. Zhautikov E&ME Institute Director 1 K.Yelemes ME Department Head E.Nugman Specialty Council representative from employers L Dyusebaev

KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY after K. SATBAYEV

APPROXEDR TEXNING AME Ka elemessov 2023y. dmission

MAJOR ELECTIVE DISCIPLINES educational program for the 2023-0024 fordemi Educational program 6B07105-1 industrial engineering Group of Educational programs B 064 - Viceopaics and metatwo

	Ful	I-time study	Study duration : 4 years Acader	nic degree. Hicke	for er Eng	seering and	Technolo	ogy	319
Year of tudy	Code of elective	Code of discipline	Name of discipline	Semestr	Cycle	Credits	Total hours	lec/lab/pr	(includin SIWT) in
ludy			General technical traini	ng module			_		-
	2201	MSM150	Calculation and design of cutting tools	6	БДКВ	5	150	1/0/2	105
	3201	MSM190	Production of cutting tools	57 J	10000				
		MSM422	Drives of CNC machines	6	БЛКВ	5	150	1/0/2	105
	3202	MSM463	Operation of machines with program control					2/1/0	
3	3203	1SO121	Dynamics of mechanical processing of workpieces	6	БД КВ	5	150	2/1/0	105
	3203	ISO170	Design of procurement production		1.850			2/0/1	
		MSM425	3D modeling and 3D printing	6	пд кв	4	120	1/2/0	75
	3302	MSM424	Process modeling in mechanical engineering					1.00.00	
		MSM159	Design and calculation of technological equipment	- 5	пд кв	5	150	1/0/2	105
	3305	MSM431	Progressive methods of surface treatment					1/2/0	
			Module of production and technolog	ical preparation					
	1 and 1	MSM426	Design of machining on CNC machines			5	150	1/0/2	105
	4301	MSM428	Development of control programs		пд кв	2	150	1/2/0	102
		MSM428 MSM429	Automation of technological processes in mechanical engineering	10.12	-	2	180	2/1/1	120
	4303	MSM429 MSM430	Robotization of machine-building production	7	пд кв	6	180	2004	120
		MSM457	Organization and planning of machine-building production	7	пд кв	6	180	2/0/2	120
4	4304	MSM421	Production design	7	пдкв	0	100	21012	
		MCH149	CAM(Solidworks, Inventor)	8	пд кв	5	150	1/2/0	105
	4306	MSM119	Additive manufacturing	0	144 KD	-	1.00	2/0/1	
	-		Management trainin	g module					-
		MNG481	Theory and practice of project management	8	пд кв	5	150	2/0/1	105
	4307	MSM418	Capstone Project	•	ILA KD			1/2/0	

Credits numbers of elective disciplines over the entir	re period of study	
Cycle of disciplines	Credits	
Cycle of basic disciplines (B)	15	
Cycle of special disciplines (S)	36	
Cycle of special disciplines (5) Overall:	51	

Decision of the Academic Council of the Institute_E&ME_. Protocol Ned_or "11" 10 20 ddy.

ME Department Head

41-E.Nugman il

Specialty Council representative from employers

SATBAYEV UNIVERSITY

I. Dyusebaev